Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 41-50, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38403603

RESUMO

Aiming at the problems of obscure clinical auscultation features of pulmonary hypertension associated with congenital heart disease and the complexity of existing machine-aided diagnostic algorithms, an algorithm based on the statistical characteristics of the high-frequency components of the second heart sound signal is proposed. Firstly, an endpoint detection adaptive segmentation method is employed to extract the second heart sounds. Subsequently, the high-frequency component of the heart sound is decomposed using the discrete wavelet transform. Statistical features including the Hurst exponent, Lempel-Ziv information and sample entropy are extracted from this component. Finally, the extracted features are utilized to train an extreme gradient boosting algorithm (XGBoost) classifier, which achieves an accuracy of 80.45% in triple classification. Notably, this method eliminates the need for a noise reduction algorithm, allows for swift feature extraction, and achieves effective multi-classification using only three features. It is promising for early screening of pulmonary hypertension associated with congenital heart disease.


Assuntos
Cardiopatias Congênitas , Ruídos Cardíacos , Hipertensão Pulmonar , Humanos , Processamento de Sinais Assistido por Computador , Hipertensão Pulmonar/diagnóstico , Algoritmos , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico
2.
Front Physiol ; 14: 1310434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074319

RESUMO

Introduction: Congenital heart disease (CHD) is a cardiovascular disorder caused by structural defects in the heart. Early screening holds significant importance for the effective treatment of this condition. Heart sound analysis is commonly employed to assist in the diagnosis of CHD. However, there is currently a lack of an efficient automated model for heart sound classification, which could potentially replace the manual process of auscultation. Methods: This study introduces an innovative and efficient screening and classification model, combining a locally concatenated fusion approach with a convolutional neural network based on coordinate attention (LCACNN). In this model, Mel-frequency spectral coefficients (MFSC) and envelope features are locally fused and employed as input to the LCACNN network. This model automatically analyzes feature map energy information, eliminating the need for denoising processes. Discussion: The proposed classification model in this study demonstrates a robust capability for identifying congenital heart disease, potentially substituting manual auscultation to facilitate the detection of patients in remote areas. Results: This study introduces an innovative and efficient screening and classification model, combining a locally concatenated fusion approach with a convolutional neural network based on coordinate attention (LCACNN). In this model, Mel-frequency spectral coefficients (MFSC) and envelope features are locally fused and employed as input to the LCACNN network. This model automatically analyzes feature map energy information, eliminating the need for denoising processes. To assess the performance of the classification model, comparative ablation experiments were conducted, achieving classification accuracies of 91.78% and 94.79% on the PhysioNet and HS databases, respectively. These results significantly outperformed alternative classification models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA